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ABSTRACT

A dual beam apparatus was developed which simultaneously
measured particle size (D32) at the entrance and exit of an
exhaust nozzle of a small solid propellant rocket motor.

The diameters were determined using measurements of diffrac-
tively scattered laser power spectra. The apparatus was

calibrated by using spherical glass beads and aluminum oxide
powder. Measurements were successfully made at both licca-
tions. Because of the presence of char agglomerates in the
exhaust, continued effort is required to improve the grain

design in order to obtain consistent "across nozzle" data.




rr

-~

DARE Jh SEA M S At S S g S B

vy T vr

TABLE OF CONTENTS

I. INTRODUCTION . . . « « ¢ o« « o o o

II. DIFFRACTIVELY SCATTERED LIGHT METHOD
A. INTRODUCTION . . . . . . . . . .
B. TECHNIQUE . . . . . . . . . .
C. APPLICABILITY . . . . .

IITI. EXPERIMENTAL APPARATUS . . . . . . .
A, LIGHT SCATTERING APPARATUS . . .
B. ROCKET MOTOR . . . . . « . .« .« .

Iv. EXPERIMENTAL PROCEDURE . . . . . . .

v. RESULTS AND DISCUSSION . . . . . . .

VI. CONCLUSIONS . . ¢ « ¢ « & « « « &

TABLES e e e e e e e e e e e e

FIGURES . e e e e e e e e e e e e

LIST OF REFERENCES . . . . .« . + « « + « .

INITIAL DISTRIBUTION LIST . . . . . . . .

P AN f"']

14
14
15
19
20
20
22
23
29
33
34

36

]
h .



Ry

vr*‘vf'vvvvv"
s

1):frff'r

I.

II.

LIST OF TABLES

EXPERIMENTAL APPARATUS . . . .

DATA SUMMARY . . . . « . « . .

L AN RSt MG il A MU AR B

34
35




7y v'r A

S
e ey

T

X

v-—v‘—.w——v—rwr,r.w

15.

16.

17.

18.

LIST OF FIGURES

Schematic Diagram of Diffractively Scattered Light
Apparatus . . . . ¢ ¢+ e 4 e e 4 e e 4 e e e e e

Photographs c¢f Light Scattering Apparatus . . . . .
Schematic of Data Acyuisition System . . . . . .
Motor Components . . . .« ¢ « & ¢ ¢ 4 4 4 e e o4 s

I(8) vs 9, Normalized Intensity Profiles, Sphericail
Glass Beads . . « v v ¢ 4 4 e e e 4 e e e e

I(9) vs 3; Spherical Glass Beads, 1-37 um . . . . .
I(9) vs 3; Spherical Glass Beads, 37-44 ym . . . .
I(?) vs 8; Spherical Glass Beads, 53-63 um . .
Voltage vs Diode--1 kHz Filter . . . . . . . . .
Voltage vs Diode--3 kHz Filter . . . . . . . .
Light Scattering Geometry . . . . . . . . .

I(9) wvs 2==Example . . . . . ¢ v ¢ ¢ v v « < .
I(9) vs B--ExXample . .« + v & « v 4 4 4 0 e . .
I(3) vs 8--1 and 3 kHz Frequency Filter Settings

I(3) vs S--Horizontal Displacement of Array

Comparison . . . ¢ v 4 4+ e e e 4 e e e e e e e
I(3) vs 3, Al,0; Powder . . . . . . . . . . . ...
SEM Photograph--Clean Sample (Typical) . . . . .

SEM Photograph--As Collected Sample (Typical) . .

36
37
38
39

40
41
42
43
44
45
46
47
48

49

50
51
52

53




Eagt 4

AAERREE S e AN Sun s Ciegh 4 A7 avih ot o

{
]

b

3

L

T —— Caan R T T T ——g———— T

ACKNOWLEDGMENT

In addition to my appreciation for the patience and un-
derstanding shown by my wife and sons, I would like to
acknowledge the advice and assistance provided by Professor
D. W. Netzer. Appreciation is also expressed to the members
of the technical staff of the Aeronautical Engineering de-
partment, Messrs. R. Besel, P. Hickey, D. Harvey and R. Gar-
cia, and especially to Mr. G. Middleton and Mr. T. Dunton,
for their assistance and advice throughout this project.

And finally, but not least, I would like to thank LT. B. J.
Hansen, who supported me not only with his data acquisition

system but with his friendship and encouragement, too.




—

Y vy Y Yw e Y T v v v

LI AN S Snaus. Satasi Sl AL JEN AN odiiN o
-

I. INTRODUCTION

Aluminum is used as a fuel additive in solid propellants
to increase the specific impulse of the rocket and to sup-
press high frequency combustion instability. Although there

is an increase in specific impulse, the specific impulse ef-

- ficiency may actually decrease when compared with the effi-

ciency of the same base propellant without aluminum [Ref. 1].
This performance loss has been largely attributed to incom-
plete combustion of the aluminum and/or the formation of
aluminum oxide particles in the motor cavity which leads to
two-phase flow losses (i.e. velocity and thermal lags between
the particles and the gas). The magnitude of the losses as-
sociated with these mechanisms has been reported to be 1% Isp
loss for 10% unburned aluminum and 2-10% loss in ISp for two-
phase flow effects [Ref. 2]. These losses are predicted
analytically and at present there exists no adegquate theo-
retical model relating particle size to propellant and motor
varameters. Therefore, the accuracy of performance predic-
tion is very dependent upon the accuracy cf particle size
data obtained experimentally.

The process by which aluminized fuel additives proceed
to final combustion products is exceedingly complex. The

final particle size is a function of several factors: ori-

ginal particle size, propellant properties, operating




environment (pressure, etc.) and the nozzle design and throat
size [Ref. 2].

b g

;( Kincaié and Derr [Ref. 3] have presented a comprehensive

description of the process. A summary of their explanation

is presented here. They divide the rocket motor into five
zones: (1) at or near the propellant surface (0.5 to 5 mm);
(2) within the motor cavity; (3) within the convergin: sec-
tion of the nozzle; (4) at the nozzle throat; (5} wi 'n
the diverging section of the nozzle. 1In zone (1), eac ar-
ticle is heated as it emexrges at the surface. Its metc core
melts, expands and eventually ruptures its surrounding oxide
layer. Some of the original metal particles may ignite and
leave the burning surface immediately. Other particles may

accumulate on the surface in groups of 100 to greater than

1000--sometimes a million [Ref. 4]. These groups leave the
f surface either as clumps or burning droplets, called agglom-
erates. The aluminum oxide particles produced by aluminum
combustion process have a bimodal size distribution. Fine
material (1 um) results from vapor phase combustion. This

size is generally considered to be invariant and upon com-

pletion of aluminum combustion amounts to approximately 80%

by weight of the total condensed phase products. Coarse

PP T YTy

material (i00 um) arises from breakup of the residual cap of
i A1203 on each burning particle. This large cap remains after
the combustion of the metal has completed. The size of these

particles is dependent on: propellant composition, pressure,

10
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flow environment and the original size of the particle or
agglomerate. It is believed that the degree of agglomera-
tion on the surface will increase for highly aluminized pro-
pellants. Hence the proportion of coarse particles would
increase.

Some oxidation occurs in zone (2), but the precise mech-
anism of oxidation is not known. In addition, some growth
of A1203 particles by condensation and coagulation occurs in
this zone. Behavior within zone (2) has been inferred from
laboratory data. It has been suggested that the behavior in
zone (2) would be dependent mainly on the size of the parti-
cles entering the zone. With increased agglomeration in zone
(1) and short residence time in 2zone (2) the particles could
enter the nozzle and be ejected prior to complete combustion.
Another complication could be settling of the laryer particles.

In zones (3), (4) and (5), size is affected by wall col-
lisions, growth of particles, breakup of particles, condensa-
tion and solidification. Zone (3) is a region of accelerating
gas velocity. When the two-phase flow of zone (2) enters
this zone, collisions occur which lead to the growth of
larger particles. As these particles accelerate, their
break-up 1s also expected. Because of the change in cross-
sectional area, the flow must turn and wall collisions occur.
As the particles enter the throat of the nozzle (zone 4),
particle breakup has been observed [Ref. 5]. As the flow

expands through zone (5), it is cooled, and condensation and

12




solidification of the alumina occurs. The problem of two-

phase flow losses occurs within zones (3)-(5) when the con-
densed phase material cannot maintain both velocity and
thermal equilibrium with the gaseous phase. According to
theory, condensed material smaller than 1 um in diameter en-
tering the nozzle will prcduce minimal two phase flow losses
even for highly aluminized solid propellants.

At this time the Air Force Improved Solid Performance
Program (SPP) uses a particle size model developed by Hermsen
[Ref. 6], based on D43, a weight (or DeBroucker) mean diame-
ter. This model is based on correlation of a large amount of
empirical data from many sources, most of which employed par-
ticle analysis of collected exhausts. Particle break-up and
fragmentation mechanisms within the nozzle utilize a model
How-

based on the critical Weber number concept [Ref. 6].

ever, test cases have indicated that assumptions made in the
model yield unrealistic particle distributions [Ref. 7].

Very little experimental information is available that re-
lates nozzle geometry and inlet particle size to the behavior
of the particles as they pass through the nozzle. Light
scattering techniques were not considered in obtaining par-
ticle sizes for Hermsen's data base, since they generally
result in only D35 (volume-surface mean diameter) and are
this

considered biased towards small particles. However,

technique has several distinct advantages. It 1is non-

intrusive and theoretically can be used at any location in

12
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or outside of the motor. Pa %icle collection procedures and
scanning electron microscope (SEM) evaluation can be used to
determine the particle size distribution and, if this fits a
log-probability function properly, the measured D32 can be
directly related to 043 [Ref. 8].

This investigation was part of a larger ongoing effort at

the Naval Postgraduate School. 1Its scope was (a) to develop

and calibrate a diffractively scattered laser power appara-

tus, (b) to apply the technique at the entrance and exit of
the exhaust nozzle of a small rocket motor, and (c) to ob=-
tain "across nozzle" particle size data from various propel-
lants which can be used to validate or improve upon the
existing particle size/behavior models used in the Air Force

Improved Solid Performance Program (SPP).

13
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II. DIFFRACTIVELY SCATTERED LIGHT METHOD

A, INTRODUCTION

The method has its origin in the Mie theory of light
scattering by spherical particles. Gumprecht and Sliepcevich
[Refs. 9 and 10] developed from this a theory describing the
scattering properties of a polydispersion. Using this theory
Chin, Sliepcevich, and Tribus [Ref. 11] conducted an investi-
gation into the determination of particle size distributions
in a polydispersion. This theory was limited to a small op-
tical depth and there were limits on particle size and re-
fractive index [Ref. 12]. A more general theory, applicable
to finite optical depths, arbitrarily large particle size and
arbitrary refractive index, was presented by Dobbins, Crocco
and Glassman [Ref. 12]. However, their theory was applicable
only to certain types of droplet size distributions. Roberts
and Webb [Ref. 13] alleviated this problem and demonstrated

the applicability of the "upper-limit distribution function"

(ULDF) which was introduced by Mugele and Evans [Ref. 14].

Using the ULDF Roberts and Webb ccncluded that the volume- ?
surface mean diameter, D32, of a polydispersion could be

accurately determined from the intensity of diffractively

scattered light without any knowledge of the general dis-

tribution type. Dobbins and Jizmagian [Refs. 15 and 16]

also concluded that the mean scattering cross section of

14
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particles was primarily dependent on the mean diameter D32,
and only weakly dependent on the shape of the size distribu-
tion function when the refractive index is near unity. The
ratio of scattered light at two forward angles was shown to
be relatively insensitive to particle refractive index and
concentration by Hodkinson [Ref. 17]. He also demonstrated
that this ratio yields a measure of D32.

With the above theories as a basis, experimental methods
have been developed for estimating the volume-surface mean
diameter,D32, of a polydispersion of particles. Nejad et al
[Ref. 18] used this method for measurement of the mean drop-
let diameter resulting from atomization of a transverse
liquid jet in a supersonic airstream. Mean diameter, refrac-
tive index and volume concentration of aerosols have been
determined by Powell et al [Ref. 19] using this technique in
conjunction with light transmission measurements. More re-
cently the practicality of this method for determination of
particle sizes in the exhaust of a solid propellant rocket

has been generally demonstrated by Karagounis [Ref. 20].

B. TECHNIQUE

The theory for the scattering of light by a single di-
electric spherical particle of size number, &, gives the fol-
lowing expression for the radiant intensity I(€) [Ref. 12]:

2

2 =
{ + 1 (1)

i 4m
{2
L(m“-1) (m+1)

15
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where D is the diameter, a is the particle size number (nD/}),
» is the wavelength of incident light, m is the refractive
index of the scattering media, © is the angle measured from
the forward direction (radians) due to an incident planar
wave of irradiance E0 and Jq is the Bessel function of first
kind of order unity.

The three terms in the bracket of Equation (1) represent
the Fraunhofer diffraction, the optical scattering due to
refraction of the centrally transmitted ray and the optical
scattering due to a grazingly incident ray, in that order.
The following restrictions apply to Equation (1) [Ref. 12]:

(1) The incident light must be planar and moncochromatic.
(2) The forward angle 3§ must be small (6 = sin 2).

(3) The particle size number (o = mD/)), and phase shift
(o0 = 20 (m-1)}) should be large.

(4) The distance between particle and observer should be
large compared to D2/X.

(5) The particle must be non-absorbing.

Dobbins et al [(Ref. 12] found that for a polydisgersion,
when the expression for intensity of scattering is normalized
(by dividing by the intensity of aiffractively scattered
light in the forward direction (3 = 0)), the second and third
terms in Equation (1) were small and could be ignored. Thus,
the expression for the normalized integrated intensity of
forward scattered light, I(8), due to a polydispersion of

large particles is given as:

16
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I1(8) = 5 (2)
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0

where D_ is maximum diameter expected; and N(D) is a distri-

buticn function such that the integral of N(D) over the di-
ameter interval is the probability of occurrence of particles

( within that interwval. Egquation (2) is valid when all parti-

YT YY

cles are illuminated equally or when the attenuation of the

—rY

incident beam is slight.

- The transmission law for a polydispersion of particles

E is given by ([Refs. 12, 15, and 21]:

b

1 E _ -TL _ 3=

. E - - exp(- 22 c,L/Dy, ) (3)
M 0

3

_cmL/oD32) (4)

o] W

exp(-

MM .~ ZBainiRene
-3
]
§
]

—

where Q is the average extinction coefficient; CV and Cm are
the volume and mass concentration of particles, respectively,

1 T, turbidity; L, path length, and o, particle density. Q and

D32 are defined as [Ref. 22]:
3 = JQ(D)N(D)D%4D 5)
IN(D)D2aD
LN (D) D> 1D
P32 = S 7. (6)
i LN (D)D" AD
4
{ 17
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Dobbins [Ref. 12] recommends that the optical depth (71L)
be maintained below 1.5 to prevent distortion of the illumina-
tion profile, I(8) vs 9.

Using the ULDF developed by Mugele and Evans [Ref. 14],
Roberts and Webb [Ref. 13] have concluded that a value of Dy,
may be determined from the intensity of diffractively scat-
tered light from a polydispersion of spherical particles, for
a wide range of size distributions. They developed a uni-
versal illumination profile (shown in Figure 5) which is a
mean curve showing the relation between normalized intensity

I(6), and ¢, a reduced angle of scattering equal to 7mD_.8/x.

32
Using this curve one can determine mean particle size but not
the distribution of sizes.

The value of D32 may then be determined as follows.

(1) The optical apparatus is calibrated by using parti-
cles cof known size as a scattering media, i.e. I(8) vs F]
curves are generated and compared to the universal curve.

(2) The actual particles, in the current investigation
the exhaust of the rocket motor, are introduced and I(39) vs
3 1s determined.

(3) Knowing I(9) and 3, 3 is determined from the cali-

bration curve and/or the universal curve.

(4) D32 is determined using the relation:

w)
|
2

32 (7)

fon)
=3

18
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C. APPLICABILITY

Karagounis [Ref. 20] has demonstrated the applicability
of this technigque in estimating the size of A1203 particles
in the exhaust of a rocket motor. The restrictive conditions
for the applicability of equation (2) were satisfied in the
present experiment in a similar manner.

(1) A He-Ne laser with spatial filter and beam expander-
collimator provided a planar, monochromatic light source.

(2) The forward angle 6 was less than 6°.

(3) Large particle size number (>1) o = 7D/X was satis-~
fied (with X = .6328 um, 0.2 ym < D < 20 um, then 1< a<100).
(4) Large phase shift was provided (>1). (Estimating

m = 1.76 for Al,0, [Ref. 23] and 1<a<100, 1.52< p< 152.)

(5) The distance between the photodiode array and the
particles was set at .8 m, which is considerably greater than
D?/% = 632 um (for a D__  of 20 um).

(6) The final condition calling for non-absorbing parti-
cles is noc met exactly, however the absorbing coefficient
for A1203 is approximately 103 times smaller than the scat-
tering coefficient for the wavelength, refractive index and
size numbers consicdered here [Ref. 20]. Plass [Refs. 23-25]
presents a very detailed discussion of this aspect.

The additional requirement of optical depth, L < 1.5 is

satisfia2d by not applying this technique to situations where

E/E, < 0.25 (Eq. 4).

19
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III. EXPERIMENTAL APPARATUS

A. LIGHT SCATTERING APPARATUS

A schematic diagram of the final optical set-up is shown
in Figure 1 and photographs are shown in Figure 2. A sche-
matic of the Data Acquisition System is shown in Figure 3.
The instruments and optical equipment are listed in Table I.
A complete description of the Data Acquisition System is pre-
sented in Reference 26. The optical equipment was mounted
on two parallel optical benches, one for the beam passing
through the exhaust and one for the beam passing through the
motor at the nozzle entrance. Initially a 5 mw Helium-Neon
laser was used as the light source. This was later replaced
by a 10 mw Argon laser, for reasons to be discussed later.
A spatial filter/beam expander located directly in front of
the light source produced a uniform light beam, one centi-
meter in diameter. 1Initially a pinhole with a 2.2 mm diame-
ter was located in front of the collimating apparatus. This
pinhole was used to reduce the size of the laser beam in
order to decrease the measurement volume. Further experi-
mentation eventually determined that this pinhole was not
necessary. The intensity of the beam was decreased using a
1 percent neutral density filter to prevent saturation of
the linear photodiode arrays. The beam was spli“ using a

50/50 cube beam splitter. One beam continued through the

20
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exhaust, the other traveled to a 90 degree prism where it was
turned parallel to the first beam and directed through the
motor at the nozzle entrance. Passage of the beam through
the motor was afforded by mounting circular glass windows in
the walls of the motor on either side of nozzle entrance
area. Both beams were passed through identical condensing
lenses (5 cm in diameter with focal lengths of 500 mm) and
focused on linear photodiode arrays. The photodiode array
assemblies each consisted of a linear photodiode array, a
"mother board" circuit card and an array board. Each as-
sembly was mounted in a lighttight black box fitted with a
narrow band pass filter. Each box was mounted on two trans-
lation stages to provide vertical and horizontal degrees of
freedom. The linear photodiode array was a self-scanning
photodiocde array consisting of 1024 silicon photodiodes
mounted in a verticai row on 25 um centers. The aperture
width was 26 um. The circuits provided an integrated,
sampled-and-held output. The "mother board" contained most
of the circuitry, including the driver/amplifier, clock,
start, and end of scan functions. The array board contained
only the circuitry which must be located close to the array
itself. The output signal was passed through a variable low
pass filter (for reasons discussed later) before transmission
to the data acquisition system. The reading of the array was
accomplished in 36 milliseconds, which corresponds to a rate

of 30 kHz.

21




B. ROCKET MOTOR

The motor was cylindrical, stainless steel with a copper
nozzle. The chamber was two inches in diameter and two
inches deep (Figure 4a). The nozzle throat diameter was .245
inches (for a chamber pressure of 760 psi). An internally
burning, six-pointed star (Figure 4b) was selected for the
grain design in an effort to achieve a period of steady state
pressure in which to take data. The grains were one inch
long and two inches in diameter with a web thickness of 0.5
inches. Each grain was cut out manually from a one inch
thick slab of propellant using frabicated shaped cutters.
The grains were prepared for ignition by applying a thin
black powder and glue mixture to the inner surface of the

grain. Electrically ignited BKNC., was discharged from the

3
head end of the motor onto the inner surface of the grain,
thus igniting the black powder, which in turn ignited the
propellant. A cylindrical stainless steel tube (8" 0.D.) was
mounted at the exhaust of the motor to collect the samples of
exhaust particles for SEM evaluation.

Two circular windows were mounted in the walls of the
motor on either side of the nozzle entrance area. The win-
dows were recessed from the motor chamber. To keep the win-
dows clean, nitrogen was discharged into this recessed area

and evenly diffused through a sintered metal filter (Figure

4c) .

22
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Iv. EXPERIMENTAL PROCEDURE

The apparatus was established in an open test cell of the
Combustion Laboratory. The output signal of the system con-
tained a quantity of high frequency noise. After numerous
unsuccessful attempts to locate and eliminate the source of
this noise, it was decided to use a variable low pass filter
to eliminate the noise from the output signal. Subseguent
examination of the filter effects during the calibration runs
determined that the filter did not adversely affect the ac-
curacy of the data readings. After a collimated and filtered
beam was acquired, the focus was set 1.52 mm above the first
diode of the array. Care was taken at all times to avoid

focusing the beam directly on the diocdes to prevent damage to

the array. It was also found necessary to slightly cant the

focusing lens to prevent interference from reflected light.

Next, the accuracy of the Diffractively Scattered Light
Method (DSLM) for obtaining the mean diameter of particles
was investigated. A comparison was made between experimen-
tally determined normalized intensity {I(3)) versus non-
dimensional angle (3) profiles and the "universal" theoretical
profile (Figure 5). The various profiles were first obtained
using spherical glass beads of different size ranges. The
individual profiles for the three size ranges of beads (1-37

um, 37-44 um and 53-63 um) are shown in Figures 6-8.
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The profiles for each size range were determined by sus-
pending the particles in water contained in a Plexiglas box
(2.5“){3.0"?{2.5“). Suspension was maintained using a mag-
netic stirrer. The first step in this calibration procedure
was to obtain the zero-scattering profile, that is, the light
intensity on each diode after passage through the stirred
water, before particles were introduced. Next the particles
were introduced and the intensity reading at each diode was
taken. Examples of intensity versus diode at 1 and 3 kHz
filter settings are shown in Figures 9 and 10, respectively.
The analog to digital conversion was accomplished by the data
acquisition system. (A complete discussion and listing of
the data acquisition and the reduction procedures discussed
below are presented separately by Hansen [Ref. 26].)

After obtaining the two scattering profiles the normal-
ized intensity I(2) versus angle theta (8) profile was de-

termined according to the relation:

I - I \ \
I(3) = 3,p 9,0 _ 3,P 3,0 (8)

Tei,p ~ Ic1,0 Vel,p T Ve1,0

where I or V are the projected light intensity and re-

cl cl
lated voltage at the centerline, and I9 and Va are the light
intensity and voltage at an angle, 9 (Figure 11). "o" and "p"

symbolize no particles and with particles, respectively. The
first step in determining the normalized intensity was to

calculate the numerator, LVS, of equation (8) by subtracting
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the two voltages at corresponding diode numbers. The maximum
difference (lower limit on diode number) computed was taken
as the point where the diffractively scattered light inten-
sity was dominant over the transmitted light intensity. The
computer determined the diode number where this cccurred. An
upper limit on diode number was taken near the point where

v -V first became zero (Figure 10). A least squares

3,p 8,0

linear fit was then made to the Ave vs diode number data and

extrapolated to obtain Vcl -V (the forward scattered

/P cl,o
light at 8 = 0). 1I(9) vs 9§ could then be calculated (equa-
tion (8)}.

An example of the relationship of I(5) versus 2 thus pro-

duced is shown in Figure 12. At this point the relationship

of I(3) versus 3 is determined using the relationship:

3= —32 5 (9)

where D is the mean diameter of the particle range being

32
used in the calibration. 1I(8) vs 8 can then be plotted (Fig-
ure 13). An nth order polynomial curve fit was then applied
to the data over a user specified range. The order of the
polynomial (also user specified) may be varied from 1 to 10
depending on the appearance of the data. The range corres-
ponded to the range of the diodes selected for determination

of the centerline values as mentioned above. An example of

the result of this process is shown in Figure 13. The

25




Ty

vy

TN VTV Y

g — — ™ T Rp—————— - T —

resulting curve is then plotted on a semi-log scale for com-
parison with the universal curve (Figures 5-8).

The results shown in Figures 5-8 for glass spheres gener-
ally agree with those of Karagounis [Ref. 20] in that larger

deviations from the universal curve occur as € increases (be-
yond § = 2.5). However, unlike the data of Karagounis,
agreement with the universal curve was not dependent on
particle mean diameter.

Several possible causes for this lack of agreement were
investigated. First the effect of filter setting was checked.
Keeping all other variables constant, data were taken with
1 kHz and 3 kHz filter settings. The resultant profiles
shown in Figure 14 are almost identical. Next the effect of
ﬂorizontal displacement of the array was studied. Again
keeping all other variables constant, two runs were made.

The f£irst had the focal point centered on the axis of the
array. In the second, the fccal point was displaced to one
side just far enough to minimize non-uniform intensity varia-
tions. Again the results showed little difference from one
another (Figure 15). A narrower particle suspension box was
also used to decrease the depth of the field, but it likewise
showed little change from the profile using the wider box.
Signal-to-noise ratio and dark current were two factors which

could not be completely eliminated and may contribute to the

lack of agreement at higher 3.
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Using the same procedure as discussed above, I(3) versus
3 profiles were prepared for four size ranges of non-spherical
A1203 powder. The results are shown in Figure 16. The re-
sults indicate reasonable agreement with the universal curve.
The experimental profiles had greater slopes than the theo-
retical profile as they did for the spherical glass beads.
However, for the A1203 the mean size affected the profile.

The particle size measuring technique was then applied
to actual motor firings. Before each motor firing calikra-
tion of the recording equipment was conducted. Proper posi-
tioning of the laser beam on the array was verified. Then
the zero scattering profile was recorded. The motor was
fired and the scattering profile was recorded automatically
at a specified pressure. Chamber pressure was recorded on a
visicorder oscillograph. In the same manner previouslyv de-
scribed the normalized intensity (I(5)) versus angle (9) was
determined. D32 values were then calculated over the re-
corded 3 range, using both calibration curves and the uni-

versal curve, from the relation:

£L>|
-~

D32 = = (10)

@
=4

Residue from the motor exhaust was captured in a stain-
less steel collection tube. Some of it was dissolved in
acetone, subjected to an ultrasonic vibrator, allowed to

settle and then dried in a vacuum oven. This "cleaned"
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sample and an "as collected" sample were examined with an

SEM. Photographs are shown in Figures 17 and 18.
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V. RESULTS AND DISCUSSION

The original goals of this investigation were (a) to
develop an apparatus to determine Ds3, from measurements of
the diffractively scattered laser power spectra using rapid
scans of linear photodiocde arrays, (b) to apply the apparatus
at the nozzle exit and through the motor at the exhaust noz-
zle entrance of a solid propellant rocket motor, and (c) to
obtain "across-nozzle” particle data for comparison with the
existing models for two-phase flow phenomena in exhaust noz-

zles. The first two goals were met, however, due to experi-

mental difficulties the last goal was only partially achieved.

The apparatus developed for this investigation has been
discussed above. Considerable difficulty was encountered
during the initial set-up of the computer controlled data
acquisition and data reduction procedures. The resulting
experimental procedures have also been discussed above (Sec-
tion IV). When the apparatus was applied to actual motor
firings several additional difficulties occurred. These
will be discussed below.

Keeping the windows clear without affecting either motor
flow or the combustion processes presented the greatest
challenge. The final solution (Figure 4c¢) consisted of a
sintered metal filter to evenly diffuse the nitrogen into

the window purge area and a converging nozzle tc slightly
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accelerate the nitrogen flow into the motor. This system
worked very well at all pressures investigated.

The light generated during the combustion process within
the motor (but not at the nozzle exit) was found to produce
significant radiation at the wavelength of the He-Ne laser
(.6328 um) initially used as the light source. This pro-
hibited the measurement of any scattered light from the par-
ticles. The light source was changed to an argon laser
(.4880 um) and the problem was alleviated.

The location of the laser beam in the exhaust jet was
found to be critical. If directed too far to the rear of
the nozzle exit, it either missed the jet entirely due to
the deflection of the jet or the particle number density was
too low. Both problems resulted in a particle scattering
profile that was nearly identical to the zero particle scat-
tering profile. With the current motor the beam was located
three inches to the rear of the nozzle exit.

The tests conducted are summarized in Table II. The
first series of tests was conducted at 775 psia. There
were two significant results: (1) there was insufficient
light through the motor to get a scattering profile; (2) the
measured D32 in the exhaust was large (30-50 um). The photo-
graphs in Figures 17 and 18 show the apparent reason for this

large D to be the presence of a small number of large ir-

32
regularly shaped agglomerates, which were not Al or A1203

(typically %-5 um spheres). These agglomerates were most
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probably inhibitor or binder char. Their influence was sig-
nificant, as even a very few large particles greatly increase
the measured D32. The sensitivity of the technique to ir-
regularly shaped particles has already been demonstrated
(Figure 16). Repeated tests resulted in different D3, at
the nozzle exhaust, apparently from different sizes of char
agglomerates at the time the diode scan was made.

The tests made at approximately 500 psia (runs 3, 4 and
5, Table I1) were made to determine, (1) if the size of the
exhaust char agglomerates were sensitive to combustion pres-
sure, and (2) if the lower chamber pressure would permit
measurement of scattered light through the motor. In addi-
tion, repeated runs were made to acgquire the diode data at
different times during the run to determine whether the data
was significantly time dependent. It was found that data
could be obtained through the motor. Comparisons with the
universal curve and the small glass bead calibration curve
(Figure 6) yielded reasonable values for Dy, of 16 and 12 um,
respectively. It was further determined that D35 measured at
the nozzle exit was sensitive to burn time, as shown by the
increasing values of D32 with increased time. And finally,
as shown in Figure 17, the spherical Al/A1203 particles were
still in the % to 5 uym size range. Therefore, the change in
measured D32 was apparently due to changes in char agglomer-

ate size during the run.
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In run 6 an end burning grain was used in an attempt to
reduce or eliminate the large char agglomerates. The results
were: (1) a significant reduction in measured D32 (however,
it was still larger than the Al/A1203 spheres), and (2) the
larger optical path with particles (increased optical den-

sity) precluded the measurement of any scattering data.

32
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VI. CONCLUSIONS

The technique developed for determining the change in
032 acrcss a solid propellant rocket motor exhaust nozzle
appears to work well. Additional effort is required to find
A grain configuration and/or an inhibitor that minimizes the
size of, or eliminates entirely, the char agglomerates.
This is required in order to be able to obtain "across noz-
zle" data during a single test. This would allow realization

of the final goal, that is, to obtain data for the validation

of the two-phase flow models.
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10.
11.

12.

TABLE I

EXPERIMENTAL APPARATUS

Spectra Physics Model 147, Helium-Neon Laser. Power

-

5 mW, Random Polarization.
Power Supply for above, Model 247, 30 watts.

Laser Beam Expander with spatial filtering, 22 mm aper-
ture, Oriel, Model 1526.

Plano-convex lens, 5 cm diameter. 50 cm focal length. (2)
Neutral density filter, FNG-043, 1%, 2.0 O.D.

Cube Beam-Splitter, 50/50.

90° Prism.

Linear Photodiode Array, EG&G Reticon, G series, 1024
elements. (2)

Mother Board Circuit Card, EG&G Reticon, RC100B. (2)
Array Circuit Card, EG&G Reticon, RC106. (2)
Narrow Band Pass Filter. (2)

DC Power Supply for Photodiode Assembly.

Variable Low Pass Filter, Krohn-Hite, model 3343.
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gure 2:

Photographs of Light Scattering Apparatus
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Voltage vs Diode--1 kHz Filter

Figure 9:
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Figure 18:

881683 28KU 58U

SEM Photograph--As Collected
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